1 (a) Show that this is a formula for the total surface area, A, of a cube of edge length x.

$$
A=6 x^{2}
$$

Explain clearly each step of your work.
(b) Complete the table for $A=6 x^{2}$ for $0 \leqslant x \leqslant 5$.

x	0	1	2	3	4	5
A	0					

(c) Draw the graph of $A=6 x^{2}$ for $0 \leqslant x \leqslant 5$.

(d) Use your graph to find the length of the edge of a cube which has a total surface area of $70 \mathrm{~cm}^{2}$.
(d)
cm [1]

2 A ball is kicked into the air. The height, h metres, of the ball above the ground after t seconds is given by this formula.

$$
h=17 t-5 t^{2}
$$

(a) Complete the table of values.

t	0	0.5	1	2	2.5	3
h	0	7.25		14		6

(b) Draw the graph of $h=17 t-5 t^{2}$.

(c) Use your graph to estimate the maximum height of the ball.
(c)
m [1]
(d) Use your graph to estimate the time when the ball hits the ground.
(d)

3 (a) Complete the table for $y=x^{2}+x$.

x	-3	-2	-1	0	1	2
y	6			0	2	

(b) Draw the graph of $y=x^{2}+x$ for $-3 \leqslant x \leqslant 2$.

[3]
(c) Use your graph to solve $x^{2}+x=3$.

Give your answers correct to 1 decimal place.
(c)
[2]
(d) Use your graph to solve these simultaneous equations.

$$
\begin{aligned}
& y=x^{2}+x \\
& y=x+2
\end{aligned}
$$

Give your answers correct to 1 decimal place.
(d) $x=$ \qquad
\qquad
$x=$ \qquad
$y=$

4 The grid shows the graph of $y=2 x-4$.

(a) Complete the table for $y=x^{2}-4 x+3$.

x	0	1	2	3	4	5
y	3	0		0	3	

(b) On the grid, draw the graph of $y=x^{2}-4 x+3$ for $0 \leqslant x \leqslant 5$.
(c) Use your graphs to solve these simultaneous equations.

$$
\begin{aligned}
& y=2 x-4 \\
& y=x^{2}-4 x+3
\end{aligned}
$$

(c) $x=$ \qquad $y=$ \qquad

5 The diagram shows the plan of a room.
All lengths are in metres.

Not to scale
(a) Show that the total area of the room, $A \mathrm{~m}^{2}$, can be given by this formula.

$$
A=x^{2}+6 x
$$

(b) Complete the table for $A=x^{2}+6 x$.

x	0	1				
A	0		16	27	40	

(c) Draw the graph of $A=x^{2}+6 x$ for x from 0 to 5 .

(d) The total area of the room is $35 \mathrm{~m}^{2}$.

Use your graph to find the length x.
(d) \qquad m [1]

6 Here is the graph of $y=x^{2}+3 x-2$.

(a) Use the graph to solve this equation.

$$
x^{2}+3 x-2=0
$$

(a)
[2]
(b) By drawing a suitable straight line on the grid, solve this equation.

$$
x^{2}+3 x-2=x+2
$$

7 Match one of these equations to each of the sketch graphs below.

$$
\begin{aligned}
& y=x^{2} \quad y=\sin x \\
& y=x^{3}-2 x \quad y=x^{3} \\
& y=x^{2}+4 \quad y=\cos x
\end{aligned}
$$

Equation

Equation \qquad

