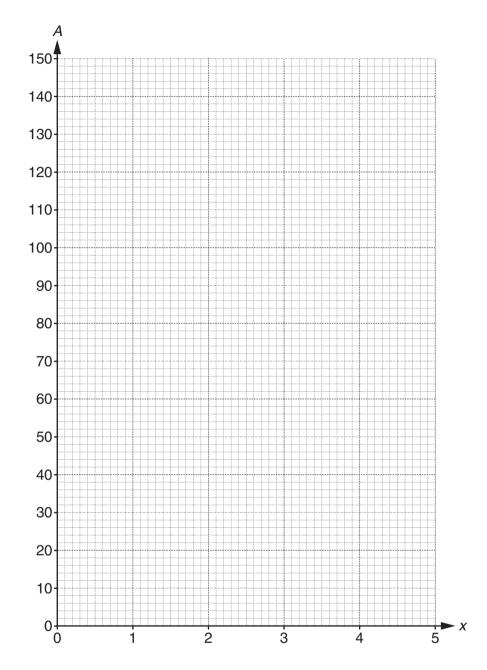
1 (a) Show that this is a formula for the total surface area, A, of a cube of edge length x.

$$A=6x^2$$


Explain clearly each step of your work.

[2]

(b) Complete the table for $A = 6x^2$ for $0 \le x \le 5$.

X	0	1	2	3	4	5
А	0					

(c) Draw the graph of $A = 6x^2$ for $0 \le x \le 5$.

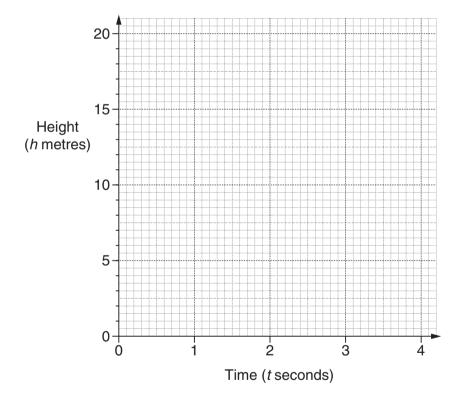
(d) Use your graph to find the length of the edge of a cube which has a total surface area of $70\,\mathrm{cm}^2$.

(d) cm [1]

[2]

2 A ball is kicked into the air.

The height, h metres, of the ball above the ground after t seconds is given by this formula.


$$h = 17t - 5t^2$$

(a) Complete the table of values.

t	0	0.5	1	2	2.5	3
h	0	7.25		14		6

[2]

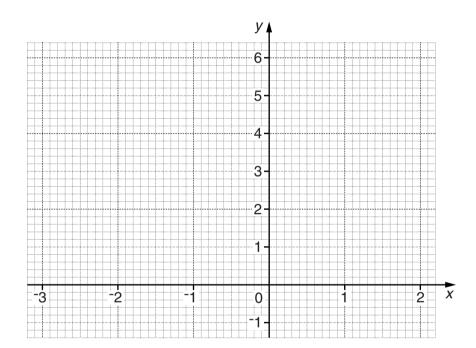
(b) Draw the graph of $h = 17t - 5t^2$.

[2]

(c) Use your graph to estimate the maximum height of the ball.

(c) m [1]

(d) Use your graph to estimate the time when the ball hits the ground.


(d)seconds [1]

3 (a) Complete the table for $y = x^2 + x$.

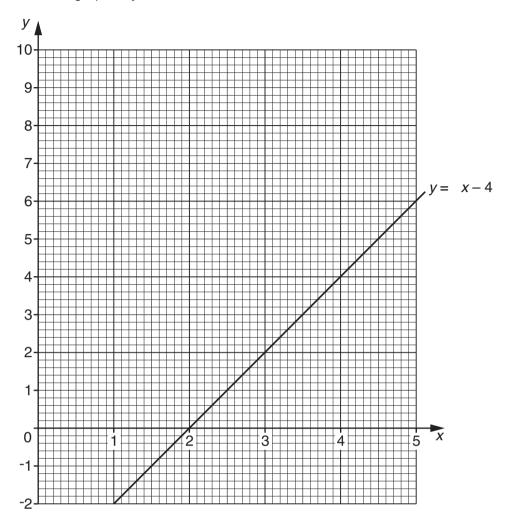
Х	-3	-2	-1	0	1	2
У	6			0	2	

[2]

(b) Draw the graph of $y = x^2 + x$ for $-3 \le x \le 2$.

[3]

(c) Use your graph to solve $x^2 + x = 3$. Give your answers correct to 1 decimal place.


(c)_____[2]

(d) Use your graph to solve these simultaneous equations.

$$y = x^2 + x$$
$$y = x + 2$$

Give your answers correct to 1 decimal place.

4 The grid shows the graph of y = 2x - 4.

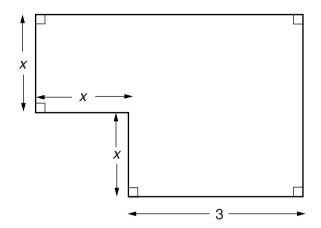
(a) Complete the table for $y = x^2 - 4x + 3$.

Х	0	1	2	3	4	5
У	3	0		0	3	

[2]

(b) On the grid, draw the graph of $y = x^2 - 4x + 3$ for $0 \le x \le 5$.

[2]


(c) Use your graphs to solve these simultaneous equations.

$$y = 2x - 4$$

$$y = x^2 - 4x + 3$$

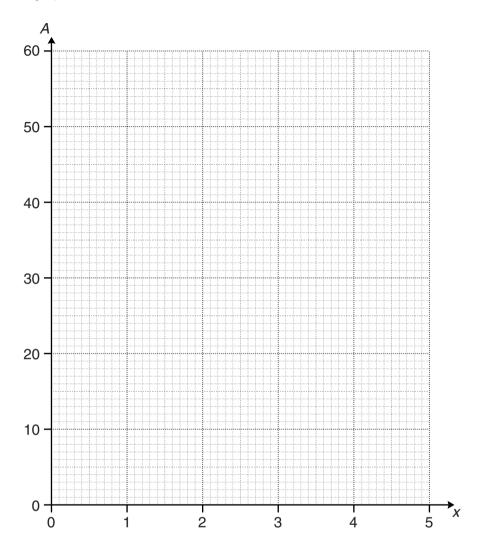
(c) *x* = *y* =

5 The diagram shows the plan of a room. All lengths are in metres.

Not to scale

(a) Show that the total area of the room, Am^2 , can be given by this formula.

$$A = x^2 + 6x$$

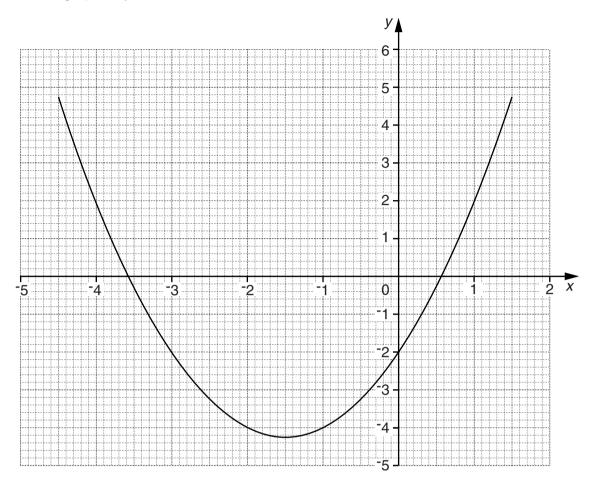

(b) Complete the table for $A = x^2 + 6x$.

Х	0	1				
Α	0		16	27	40	

[2]

[2]

(c) Draw the graph of $A = x^2 + 6x$ for x from 0 to 5.


(d) The total area of the room is $35\,\text{m}^2$.

Use your graph to find the length x.

(d) _____ m [1]

[2]

6 Here is the graph of $y = x^2 + 3x - 2$.

(a) Use the graph to solve this equation.

$$x^2 + 3x - 2 = 0$$

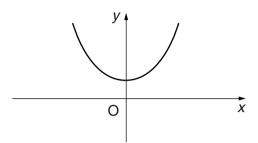
(a)_____[2]

(b) By drawing a suitable straight line on the grid, solve this equation.

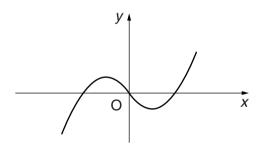
$$x^2 + 3x - 2 = x + 2$$

7 Match one of these equations to each of the sketch graphs below.

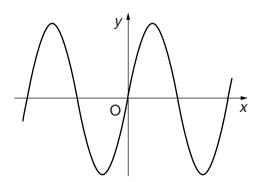
$$y = x^2$$


$$y = \sin x$$

$$y = x^3$$


$$y = x^3 - 2x$$

$$y = x^2 + 4$$


$$y = \cos x$$

Equation _____

Equation _____

Equation _____